The Path to Build Happiness

Jenn Strater, Developer Advocate at Gradle

W @codeJENNerator

Jenn Strater

@® Developer Advocate at Gradle

@® Previously a software engineer at
various companies

@ Berlin <-> Minneapolis, MN, USA

3y @codeJENNerator

Gradle Build Tool

Open Source

Build Automation

YW @codeJENNerator

Gradle Inc

Gradle Enterprise

Commercial Product (on-premises)

Development Productivity

Outline

What is Developer Productivity Engineering?
Current state of Developer Productivity
Achieving Build Happiness

Measure

Analyze

Optimize

Iterate

T

What is Developer Productivity Engineering?

9 @codeJENNerator

The Paradox of Success

Without intervention, as the

Lines of Code

No. of developers

No. of repositories
No. of dependencies

No. of support tech stacks

increase, so does the frustration!

How do we get back to bliss?

E

) i
y 4 A

Image by #/WOCinTech Chat
https://flic.kr/p/F81Nad

https://flic.kr/p/F81Nqd

Quality of Creative Flow
+ Collaborative Effectiveness

Team Productivity

W @codeJENNerator

| 0
) g ‘! g [
- =] i e
/ \ \

Developer Productivity Engineering is a culture
where the whole organization commits to an effort to
maximize developer productivity.

Developer Productivity Engineering KPlIs

@® Degree of automation
@® Speed of feedback cycles

@® Correctness of the feedback

3y @codeJENNerator

Developer Productivity Engineering

Priorities and success criteria primarily based on data that comes from a fully

instrumented toolchain.

100%

80%

60%

40%

20%

0%
Q1 Q2 Q3 Q4

2017

3y @codeJENNerator

100%

80%

60%

40%

20%

0%

NI

Q1 Q2 Q3 Q4

2018

100%

80%

60%

40%

20%

0%

Q1 Q2 Q3 Q4
2019

+
J

L

Current State of Developer Productivity Engineering

Context Switching

W @codeJENNerator

The longer the build the harder to debug

3y @codeJENNerator

Fix time grows exponentially over detection time
50

40
30

20

Time to fix defect

10

2 4 6 8 10
Time to detect defect

@® Inthecase of afailure, the time fixing the failure is growing exponentially with the time it

takes to detect it.

YW @codeJENNerator ﬁ

Fix time grows exponentially over detection time

250
200
150

100

Time to fix defect

50

0 5 10 15

Time to detect defect

@® Because of growing build times, test and builds are pushed to a later point in the life cycle.
@® Theexponential costs for debugging is increased by that.

@® Italsoincreasesthe change set size as it becomes inconvenient to get feedback.
YW @codeJENNerator ﬁ

Low Developer Productivity is blocking innovation

[

Breaking the cycle

YW @codeJENNerator

J—)

Step O. Focus on Developer Productivity

9 @codeJENNerator

Prioritization without data

O Later

O Tomorrow
O Today

%NOW

W @codeJENNerator

Troubleshooting sessions begin
with a game of 20 questions
Person asking for help often
doesn’t know what context is

important

Helpers can burn out on helping

Root cause analysis often
impossible without the helper
reproducing the problem
Impossible to determine the

impact of the issue

Results in anecdote-driven prioritization

@® Non-verification failure masks as s f]]
verification failure (flakey test) 1) o /S all§ so i
® \Verification failure masks as
7 /W)
non-verification failure (snapshot e

\\ N W
dependency issue) ~

@® Non-verification failure might be caused q ‘\, (,, p
by bug in a plugin or user

/

mis-configuration

@® Manyissues are flakey and hard to X . =
reproduce
9 @codeJENNerator w

]

Reliability

But | didn’t change anything!

Flaky builds and tests are maddening
W @codeJENNerator ﬂ

Frustrated Developers Leave

Most developers want to work in an environment that
enables them to work at their full potential.

Organizations that can not provide such an environment
will lose talent.

gy @codeJENNerator

Achieving Build Happiness

@codeJENNerator

Faster builds improve the creative flow

Team 1 Team 2

No. of Devs 11 6
Build Time 4 mins 1 mins
No. of local builds 850 1010

@® Thefaster the feedback is, the more often devs ask for feedback

@® The more often they ask for feedback, the more fine grained they can work.

YW @codeJENNerator

(© Build time O 7 Serial execution ¢/ Avoidance savings @ @ Build cache overhead €9 Dependency downloading 8

S5m0 34.29..c 24x 15.. 44.15.. 81.38%) 4.57... 0.54..

; U
Mgty !g!!!!!!!!g!!!!!!! i e ey T TR TR

LLULLULULUELLELUELLELLELLELLELLELLCLLELLELLELELL BB CRRL L CBRLBLLBRL R !!!l!"

!
|
T TR TR

9 @codeJENNerator i?

5] 1145 tasks executed in 118 projects in 16.420s

®
Started after Duration Class Execution ¥
KotlinCompileWithWorkers

JavaCompile
JavaCompile
ExtractPrecompiledScriptPluginPlugins
GeneratePluginDescriptors
GeneratePluginDescriptors
ProcessResources
GeneratePluginDescriptors
GeneratePluginDescriptors
ProcessResources
GroovyCompile
GroovyCompile
ProcessResources
ProcessResources
ProcessResources
GenerateScriptPluginAdapters
DefaultTask
ProcessResources
GeneratePluginDescriptors
ExtractPrecompiledScriptPluginPlugins
GeneratePluginDescriptors
GenerateScriptPluginAdapters
ProcessResources

9 @codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/timeline

@Gradle Enterprise

Summary Build

Console log
Total build time
Initialization & configuration
Timeline Startup
Settings
Build :buildSrc
Projects Loading projects
Configuration
Execution
Build dependencies Task execution

End of build

Deprecations

Dependencies

Plugins

Custom values Total garbage collection time

5t
2
&
>
s

Switches
Peak heap memory usage
G1 Old Gen

3

g
Rl

Infrastructure

©)

See before and after

&0) Compare build scan

9 @codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/performance

@Gradle Enterprise

Summary
Console log
Deprecations

Timeline

Projects
Dependencies
Build dependencies
Plugins

Custom values
Switches

Infrastructure

See before and after

&) Compare build scan

9 @codeJENNerator

Task execution

Time spent executing tasks

All tasks

voided
From cache
Ur
k
Cacheable

Not cacheable

No source

Ski d
Skipped

Snapshotting task inputs

= 1145 tasks in 118 projects
:distributions:binZip
:kotlinCompilerEmbeddable:unpackPatchedKotlinCompilerEmbeddable
:performance:distributedPerformanceTest
:docs:distDocs
:kotlinCompilerEmbeddable:clean
:toolingApi:toolingApiShadedJar
:javascript:processResources
:kotlinCompilerEmbeddable:patchKotlinCompilerEmbeddable
:processServices:jar
:performance:intTestimage
:resourcesGces:classpathManifest
:dependencyManagement:jar
:internallntegTesting:prepareVersionsinfo
:core:jar

:internalintegTesting:jar
:core:compileJava

:kotlinDsl:jar
:dependencyManagement:compileJava
:internalTesting:jar
:modelCore:compileJava

sidezjar

:modelCoreiar

https://e.grdev.net/s/vpui4db7vx6xo/performance

Capture data from every build run on local AND ClI

Comprehensive data allows for root cause analysis without reproducing locally

radle Enterprise adle clean core:quickTe [Build scans
Summary The :core:test task failed.
Console log There were failing tests. See the report at: file:///home/tcagentl/agent/work/668602365d1521fc/subprojects/ build/reports/tests/test/index. html

org.gradle.api.tasks.TaskExecutionException: Execution failed for task ':core:test’. Opens

Deprecations Caused by: org.gradle.api.GradleException: There were failing tests. See the report at: file:///home/tcagent1/agent/work/668602365d1521fc/subprojects/core/build/report]

Timeline Test t
Performance

Tests

Projects

Dependencies

Build dependencies

Plugins

Custom values

Switches

Infrastructure

See before and after

Compare build scan

9 @codeJENNerator

Visual

Analyze!

What is Gradle Enterprise?

® ®
SCM
(Git, SVN,
Perforce, ...)
O

Q Workspace Workspace =

Developers Gradle Maven Gradle Maven Jenk CT| -
Build Tool Build Tool Build Tool Build Tool e"c'i’r‘cslvea?ﬁ) ity,

Export API Build Scans Build Cache

Gradle Enterprise

YW @codeJENNerator

Gradle Enterprise is a data platform

@® Collectteam data - all the data
Compare build scans abOUt every bUild acCross the team
creates unique dataset and insights.

! [[: oo 15 Build Performance Management -
Sharhe buI:Id scans f g (((((o) ‘ EXPO: build data Only With representative, aCtiona ble
with colleagues o i P s to other systems . .
) 2 '1?(?’ ff'(k ’ data will builds get and stay fast and
, [[[/ WW :] Joee == reliable.
H ({ L [I 7 BB Debugging acceleration - only with
Yiew build scans { : - \:9 { Sea.rch for build scans ComprehenSive’ deep data iS it
in your browser - St | [20 in your browser . . .
N [L[e possible to quickly discover the root
ar | (cause for build failures.
[[[[4 Gradle Enterprise

Record developer and Cl builds

W @codeJENNerator

Failure Types

® \Verification Failures

o Syntax error detected by compilation

o Code style violation detected by checkstyle

o Misbehavior in the code detected by a JUnit test
® Non-Verification Failures

o Flakey Test

o Binary repository down

o Out of memory exception while running the build

@® Slow Builds

9 @codeJENNerator

Impact analysis

Execution failed for task *
> Build cancelled while executing task *

Failure count

58

of 74.3K builds

9 @codeJENNerator

Affected users

5

oehme

13(22.41%)

THERS

Affected hosts

Non-verification Verification Al failures

Top Tags

CACHED [E

QuickFeedback

Root Cause Analysis

o)) . .
(<~ Build comparison

22 Dependen

Custom values ®
Switches

Infrastructure ®

9 @codeJENNerator

V gradle clean coreApiztest

Comparing 6 tasks with differences

coreApi:compileJava
Task Class radle.api.tasks.compile. JavaCompile

File properti

src/main/java

eptionjava
java
Resulting cache key 583 2 c957te9felf1at
Resulting outcome
coreApi:parameterNamesindex
Task Class build ParameterNamesind

File properties classpat

Resulting ca

Resulting

Apiar

+ gradle clean coreApitest

radle.api.tasks.compile.J;

655781bb298

FROM-CACHE

arameterNamesindex

Compile

d17e08af7edfed61266

FROM-CACHE

' @g

Optimize!

&?Gradle Enterprise

Summary Bu onfigura Dependenc solutio Tasl (3 : r I \ Settings and suggestions

Console log

. Build was run with a development Gradle version (6.0-rc-1)
Deprecations

. . Development versions of Gradle may be less stable than final versions.
Timeline

[Learn more about the latest
Projects Build was run via the daemon

Dependencies Parallel execution was enabled

Build dependencies Some task outputs were not cacheable

Plugins Cacheable task outputs can be reused between builds on one computer or even between builds running on different computers via build cache.

Custom values Some task outputs were not cacheable due to the following reasons:

Switches

known reason

s
Ef
&
&

Task output caching not en
Infrastructure put caching not er
£ Learn more about the Tas

See before and after

SRe)

Compare build scan

9 @codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/performance/suggestions

Build Caching

Inputs

-~

o

Gradle Tasks
Maven Goal Executions

~

Outputs

/

When the inputs have not changed, the outputs can be reused from a previous run.

YW @codeJENNerator

v

Cacheable Task/Goal Executions

Gradle Compile/Maven Compile Gradle Test/Maven Surefire
e Source Files e Test Source Files
e Compile Classpath e Runtime Classpath
e Javaversion e Javaversion
e Compiler configuration e System properties
e etc. e etc..

Caching is a generic feature and applies to all tasks/goals.
For 10-bound tasks/goals caching has no benefits (e.g. clean, copy).

3V @codeJENNerator

Caching is effective for multi-module builds

pom.xml settings.gradle

<modules> include ‘core’
<module>core</module> include ‘service’
<module>service</module> Include ‘webapp’
<module>webapp</module> Include ‘export-api’
<module>export-api</module> Include ‘security’
<module>security</module>

</modules>

Builds with a single module will only moderately benefit from the cache

3y @codeJENNerator

@ Task/Goal needs to be executed @ Task/Goal is retrieved from build cache

YW @codeJENNerator ﬁ

@ Task/Goal needs to be executed @ Task/Goal is retrieved from build cache

YW @codeJENNerator ﬁ

@ Task/Goal needs to be executed @ Task/Goal is retrieved from build cache

W @codeJENNerator ﬁ

Cache effectiveness

@® Evenwithonly afew modules a cache significantly reduces build and test times
@® For larger multi-module builds often 50% of modules are leaf modules
o Build times is reduced by approximately 1/n with n being the number of modules

@® Checkingtheinputs and downloading & unpacking items of the cache introduces overhead.

Overhead is often very small compared to benefits

@® Overhead should be measured and monitored too

3y @codeJENNerator

Gradle CI Builds

B caching enabled B caching disabled
400

350
300
250
200 -

=Ml MU I

Build time in minutes

Build times are >80% faster for Gradle Core
Dramatically better caching results due to build scans.

YW @codeJENNerator

Spring Boot build time for compile and unit tests (fully cached)

https://spring.io/projects/spring-boot

25:00
20:00 20:25
15:00
=
£
S 10:00
®
5
(]
05:00

_— . 01:49

Build Time without Build Time with Gradle Build Time with Gradle Estimated Build Time

Gradle Enterprise Enterprise out of the Enterprise after with Gradle Enterprise
box optimizin with 2019.2 release
(6x,16.5%) (7x,13.6% (11x, 8.9%)

YW @codeJENNerator

4

Local Build Cache

@® Usesacachedirectory on your local machine
@® Speedsupdevelopment for single developer or build agent

@® Reuses build results when switching branches locally

YW @codeJENNerator

Remote Build Cache

[_o] [__o]
= =
Lo o

g Q &—> | Local cache

Developer

Remote cache

@® Shared among different machines
@® Speedsupdevelopment for the whole team
@® Reuses build results among Cl agents/jobs and individual developers

YW @codeJENNerator

Debugging cache misses

C:’? Build comparison S w
< Taskinputs @ Vv gradle clean coreApi:test @ Vv gradle clean coreApi:test
$2 Dependencies ® [cACHED) [LocAL] (dirty] [master CACHED] [LOCAL] (dirty] [master]

= Custom values ® Started on Apr 15 2019 at 5:22:20 PM CEST, finished on Apr 15 2019 at 5:22:46 PM CEST Started on Apr 15 201 1:43 PM CEST, finished on Apr 15 2019 at 5:21:49 PM CEST
2 switches Gradle 5.4-rc-1, Build scan plugin 2.2.1 Gradle 5.4-rc-1, Build scan plugin 2.2.1
Infrastructure ®
= . Comparing 6 tasks with differences
:coreApi:compileJava
Task Class org.gradle.api.tasks.compile.JavaCompile org.gradle.api.tasks.compile.JavaCompile
File properties classpath >
source v
Normalization: relative path @
subprojects/core-api/src/main/java ¥
org/gradle/api v
& BuildCancelledException.java
NewApiClass.java
Resulting cache key 583af90820ch4674a4c957fe9felflab 655781bb29886d1ec990619beff2bObc
Resulting outcome ~ FROM-CACHE FROM-CACHE
:coreApi:parameterNamesindex +
Task Class build.ParameterNamesIndex build.ParameterNamesindex
File properties classpath >
sources >
Resulting cache key 598b0358a0d431e70d3860b13983e89¢ €9c3846289d17e08af7edfed61266b99
Resulting outcome ~ FROM-CACHE FROM-CACHE

:coreApizjar ~

LinkedIn: Productivity at scale: How we improved build time with Gradle build cache
SoundCloud: Solving Remote Build Cache Misses by Annoying Your Colleagues

YW @codeJENNerator

https://engineering.linkedin.com/blog/2019/productivity-at-scale--how-we-improved-build-time-with-gradle-bu
https://developers.soundcloud.com/blog/gradle-remote-build-cache-misses-part-2

YW @codeJENNerator

Performance regressions are easily introduced

@ Build time Non execution @ Execution
3 min 45 sec 10.35 sec 3 min 34 sec
21.67 min 25TH-75TH %ILE

0.18 min - 4.58 min

5TH-95TH %ILE
0.09 min - 15.71 min

; I MEAN
10.83 min : 374 min
MEDIAN
_______ 0.50 min
0.00 min
Oct 20 Oct 21 Oct 22 Oct 23 Oct 24 Oct 25 Oct 26 Oct 27

Infrastructure changes
New annotation processors or versions of annotation processors

Build logic configurations settings

Code refactoring

YW @codeJENNerator

What happens today with most regressions

® Unnoticed

Noticed but unreported
@® Reported but not addressed
o Root causeis hard to detect (especially with flakey issues)
o Overall impact and priority can not be determined
@® Escalated after they have caused a lot of pain
o Problem gets fixed after it has wasted a lot of time and caused a lot of frustration
amongst developers.

@® Result: The average build time is much higher than necessary and continuously increasing.

3y @codeJENNerator

fe® b

Performance Analytics

(9 Build time O I Serial execution & 2/ Avoidance savings @ Build cache overhead 8‘2 Dependency downloading @

4., 44.48... S5m0 34.29.c 24x) 15.. 44.15. (81.38%) 4.57.. 0.54..

2h 46m
2h 5m
1h 23m

41m 40s

!l!l!!lII!ll!!ll!!!lla!lIllIIl!!l!l!l!llﬁ!!!llll!ljll!“llllliilImll“ll“lll!illi“i“iliiIIIIIlII“!!!!l!!llll!!l!!!l!!!!!!!!!!l!!l!!!!ll!!ll!!!l!a!!II!I!I!!II!I!!IIUIUUII!!Ill!l!llllllla

W @codeJENNerator ﬁ

ot

Failures Dashboard

ﬁ? Gradle Enterprise ¢ Build scans Performance Gl Trends (X Failures Q5

User Outcome Project Requested tasks/goals @ Start time Hostname
09/29/2019 00:00 - 10/27/2019 00:21 CEST () [2=]
Custom values @ Tags @ Build tool
Gradle & Maven

Q | Find failures by message Non-verification Verification All failures

Failure count Failures over time

' 800

10.2K 400
-] — Hm =xlEEEEN

Sep 29 Octl Oct2 Oct3 Oct4 Oct5 Octé6 Oct7 Oct8 Oct9 Oct 11 Oct 13 Oct 15 Oct 17 Oct 19 Oct 21 Oct 23 Oct 25 Oct 27
Top failures
7 5 5 K Execution failed for task *
.builds > There were failing tests. See the report at: file://*/*/*/*/build/reports/* /index.html
5 5 7 Execution failed for task *
> Too many failures * in first *run!

builds
2 1 5 A problem was found with the configuration of task * (type 'IntegrationTest’).
builds > Directory "tcagent1*work*subprojects*build*integ test*samples' specified for property 'distributionSamples.samples' does not exist.

ullds
1 80 A problem was found with the configuration of task * (type 'IntegrationTest).
i > Directory 'C:\tcagent1\work\a16b87e0a70f8cée\subprojects*\build\integ test\samples' specified for property 'distributionSamples.samples’ does not exist.

uilds

s Eviiiss ikl faeknalat

Gradle Enterprise 2019.3.4 | © Gradle Inc. 2019 | Help and Feedback

W @codeJENNerator

é’:? Gradle Enterprise

Outcome Project

User

Custom values @ Tags @

Execution failed for task *
> There were failing tests. See the report at: file://*/*/*/*/build/reports/*/index.html

< See all failures
Failure count

7.55K

of 385K builds

Failures over time

600

Requested tasks/goals @

Affected users
tcagent1
5883 (77.9%)
tcagent
662 (8.77%)
wolf

382 (5.06%)

12 OTHERS
625 (8.28%)

15

users

£ Build scans Performance i Trends (%) Failures Q i
Start time Hostname
09/29/2019 00:00 - 10/27/2019 00:21 CEST (=) |
Build tool
Gradle & Maven
Non-verification Verification All failures

Affected hosts

Stefans-MacBo...
382(5.06%)

dev101gradieor...
163 (2.16%)

542

hosts devoTgradleorg....

159 (2.11%)

539 OTHERS
6848 (90.68%)

0—....._—-.. -- --.. ...
Oct20 Oct21 Oct22 Oct23 Oct24 Oct25 Oct26

Top Tags

CACHED
a
Check [EEH]
FunctionalTest
IndividualPerformanceScenarioWorkers
dirty
release

master

Sep29 Sep 30 Oct1 Oct 2 Oct 3 Oct 4 Oct5 Oct 6 Oct7 Oct 8 Oct 9 Oct10 Oct11 Oct12 Oct13 Oct14 Oct15 Oct16 Oct17 Octl18 Oct19 Oct 27
Failed builds (50 most recent)
Start time Project Requested tasks/goals User Hostname
yesterday at 11:48:42 PM gradle clean largeMonolithicJavaProject fullPerformanceTests --baselines 6.1-commit-e1f7948 --scenarios up... tcagentl dev32.gradle.org
) et e = |

I — =

Gradle Enterprise 2019.3.4 | © Gradle Inc. 2019 | Help and Feedback

W @codeJENNerator

Flaky Tests

Flaky tests are a problem for everyone
We're currently working on a solution
Plan to release this in Q4/2019

Interested in your ideas & thoughts

Conclusion

@® Don'tsufferinsilence.
@® The Pathto Build Happiness is through Developer Productivity.

@® Measure, Analyze, Optimize, and Iterate to achieve and maintain build happiness.

9 @codeJENNerator

Resources

Developer Productivity Engineering

Using data and acceleration techniques to improve the developer
experience and essential software development processes

Hans Dockter
Sam Snyder ﬁ Gradle

@® Early Access Book: https://gradle.com/developer-productivity-engineering
@® Tryoutbuild scans for Maven and Gradle for free: https://scans.gradle.com

@® Gradle Enterprise docs and tutorials: https://docs.gradle.com

YW @codeJENNerator

https://gradle.com/developer-productivity-engineering/
https://scans.gradle.com
https://docs.gradle.com

Thank you!

Y @codeJENNerator

