
The Path to Build Happiness
Jenn Strater, Developer Advocate at Gradle

@codeJENNerator

Jenn Strater

⬢ Developer Advocate at Gradle

⬢ Previously a software engineer at
various companies

⬢ Berlin <-> Minneapolis, MN, USA

@codeJENNerator

Gradle Inc

Open Source

Build Automation

Commercial Product (on-premises)

 Development Productivity

@codeJENNerator

Outline
What is Developer Productivity Engineering?

Current state of Developer Productivity

Achieving Build Happiness

Measure

Analyze

Optimize

Iterate

What is Developer Productivity Engineering?

The Paradox of Success

Without intervention, as the

⬢ Lines of Code

⬢ No. of developers

⬢ No. of repositories

⬢ No. of dependencies

⬢ No. of support tech stacks

increase, so does the frustration!

@codeJENNerator

Blank background use at will
How do we get back to bliss?

Creative
Flow

Image by #WOCinTech Chat
https://flic.kr/p/F81Nqd

Collaborative Effectiveness

https://flic.kr/p/F81Nqd

Quality of Creative Flow

+ Collaborative Effectiveness

Team Productivity

@codeJENNerator

Blank background use at will
Developer Productivity Engineering is a culture

where the whole organization commits to an effort to
maximize developer productivity.

Developer Productivity Engineering KPIs

⬢ Degree of automation

⬢ Speed of feedback cycles

⬢ Correctness of the feedback

@codeJENNerator

Developer Productivity Engineering

Priorities and success criteria primarily based on data that comes from a fully

instrumented toolchain.

Q1 Q2 Q3 Q4

0%

20%

40%

60%

80%

100%

2017

Q1

2018

Q2 Q3 Q4

0%

20%

40%

60%

80%

100%

2019

Q1 Q2 Q3 Q4

0%

20%

40%

60%

80%

100%

@codeJENNerator

Current State of Developer Productivity Engineering

Context Switching

@codeJENNerator

The longer the build the harder to debug

@codeJENNerator

⬢ In the case of a failure, the time fixing the failure is growing exponentially with the time it

takes to detect it.

@codeJENNerator

⬢ Because of growing build times, test and builds are pushed to a later point in the life cycle.

⬢ The exponential costs for debugging is increased by that.

⬢ It also increases the change set size as it becomes inconvenient to get feedback.

@codeJENNerator

Low Developer Productivity is blocking innovation

Breaking the cycle

@codeJENNerator

Step 0. Focus on Developer Productivity

@codeJENNerator

Prioritization without data

⬢ Troubleshooting sessions begin

with a game of 20 questions

⬢ Person asking for help often

doesn’t know what context is

important

⬢ Helpers can burn out on helping

⬢ Root cause analysis often

impossible without the helper

reproducing the problem

⬢ Impossible to determine the

impact of the issue

@codeJENNerator

Results in anecdote-driven prioritization

⬢ Non-verification failure masks as

verification failure (flakey test)

⬢ Verification failure masks as

non-verification failure (snapshot

dependency issue)

⬢ Non-verification failure might be caused

by bug in a plugin or user

mis-configuration

⬢ Many issues are flakey and hard to

reproduce

@codeJENNerator

Reliability

Flaky builds and tests are maddening

But I didn’t change anything!

@codeJENNerator

Frustrated Developers Leave

Most developers want to work in an environment that
enables them to work at their full potential.

Organizations that can not provide such an environment
will lose talent.

@codeJENNerator

Achieving Build Happiness

Measure!

@codeJENNerator

Faster builds improve the creative flow

Team 1 Team 2

No. of Devs 11 6

Build Time 4 mins 1 mins

No. of local builds 850 1010

⬢ The faster the feedback is, the more often devs ask for feedback

⬢ The more often they ask for feedback, the more fine grained they can work.

@codeJENNerator

@codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/timeline
@codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/timeline

https://e.grdev.net/s/vpui4db7vx6xo/performance

@codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/performance

https://e.grdev.net/s/vpui4db7vx6xo/performance@codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/performance

Capture data from every build run on local AND CI

Comprehensive data allows for root cause analysis without reproducing locally

@codeJENNerator

Analyze!

What is Gradle Enterprise?

@codeJENNerator

Gradle Enterprise is a data platform

⬢ Collect team data - all the data
about every build across the team
creates unique dataset and insights.

⬢ Build Performance Management -
only with representative, actionable
data will builds get and stay fast and
reliable.

⬢ Debugging acceleration - only with
comprehensive, deep data is it
possible to quickly discover the root
cause for build failures.

@codeJENNerator

Failure Types

⬢ Verification Failures

○ Syntax error detected by compilation

○ Code style violation detected by checkstyle

○ Misbehavior in the code detected by a JUnit test

⬢ Non-Verification Failures

○ Flakey Test

○ Binary repository down

○ Out of memory exception while running the build

⬢ Slow Builds

@codeJENNerator

Impact analysis

@codeJENNerator

Root Cause Analysis

@codeJENNerator

Optimize!

@codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/performance/suggestions

@codeJENNerator

https://e.grdev.net/s/vpui4db7vx6xo/performance/suggestions

Build Caching

When the inputs have not changed, the outputs can be reused from a previous run.

@codeJENNerator

Cacheable Task/Goal Executions

Gradle Compile/Maven Compile

● Source Files

● Compile Classpath

● Java version

● Compiler configuration

● etc...

Gradle Test/Maven Surefire

● Test Source Files

● Runtime Classpath

● Java version

● System properties

● etc...

Caching is a generic feature and applies to all tasks/goals.
For IO-bound tasks/goals caching has no benefits (e.g. clean, copy).

@codeJENNerator

Caching is effective for multi-module builds

pom.xml

<modules>
 <module>core</module>
 <module>service</module>
 <module>webapp</module>
 <module>export-api</module>
 <module>security</module>
</modules>

Builds with a single module will only moderately benefit from the cache

settings.gradle

include ‘core’
include ‘service’
Include ‘webapp’
Include ‘export-api’
Include ‘security’

@codeJENNerator

compile testgenSource compile testscheckstylecore

compile testgenSource compile testscheckstyleservice

compile testgenSource compile testscheckstylewebapp

compile testgenSource compile testscheckstylesecurity

compile testgenSource compile testscheckstyleexport-api

Task/Goal needs to be executed Task/Goal is retrieved from build cache

@codeJENNerator

compile testgenSource compile testscheckstylecore

compile testgenSource compile testscheckstyleservice

compile testgenSource compile testscheckstylewebapp

compile testgenSource compile testscheckstylesecurity

compile testgenSource compile testscheckstyleexport-api

Task/Goal needs to be executed Task/Goal is retrieved from build cache

@codeJENNerator

compile testgenSource compile testscheckstylecore

compile testgenSource compile testscheckstyleservice

compile testgenSource compile testscheckstylewebapp

compile testgenSource compile testscheckstylesecurity

compile testgenSource compile testscheckstyleexport-api

Task/Goal needs to be executed Task/Goal is retrieved from build cache

@codeJENNerator

Cache effectiveness

⬢ Even with only a few modules a cache significantly reduces build and test times

⬢ For larger multi-module builds often 50% of modules are leaf modules

○ Build times is reduced by approximately 1/n with n being the number of modules

⬢ Checking the inputs and downloading & unpacking items of the cache introduces overhead.

⬢ Overhead is often very small compared to benefits

⬢ Overhead should be measured and monitored too

@codeJENNerator

Gradle CI Builds

Build times are >80% faster for Gradle Core
Dramatically better caching results due to build scans.

@codeJENNerator

@codeJENNerator

Local Build Cache

⬢ Uses a cache directory on your local machine

⬢ Speeds up development for single developer or build agent

⬢ Reuses build results when switching branches locally

@codeJENNerator

Remote Build Cache

⬢ Shared among different machines

⬢ Speeds up development for the whole team

⬢ Reuses build results among CI agents/jobs and individual developers

@codeJENNerator

Debugging cache misses

LinkedIn: Productivity at scale: How we improved build time with Gradle build cache
SoundCloud: Solving Remote Build Cache Misses by Annoying Your Colleagues

@codeJENNerator

https://engineering.linkedin.com/blog/2019/productivity-at-scale--how-we-improved-build-time-with-gradle-bu
https://developers.soundcloud.com/blog/gradle-remote-build-cache-misses-part-2

Iterate!
@codeJENNerator

Performance regressions are easily introduced

⬢ Infrastructure changes

⬢ New annotation processors or versions of annotation processors

⬢ Build logic configurations settings

⬢ Code refactoring

@codeJENNerator

What happens today with most regressions

⬢ Unnoticed

⬢ Noticed but unreported

⬢ Reported but not addressed

○ Root cause is hard to detect (especially with flakey issues)

○ Overall impact and priority can not be determined

⬢ Escalated after they have caused a lot of pain

○ Problem gets fixed after it has wasted a lot of time and caused a lot of frustration

amongst developers.

⬢ Result: The average build time is much higher than necessary and continuously increasing.

@codeJENNerator

Performance Analytics

@codeJENNerator

Failures Dashboard

@codeJENNerator

@codeJENNerator

Flaky Tests

Flaky tests are a problem for everyone

We’re currently working on a solution

Plan to release this in Q4/2019

Interested in your ideas & thoughts

Conclusion

⬢ Don’t suffer in silence.

⬢ The Path to Build Happiness is through Developer Productivity.

⬢ Measure, Analyze, Optimize, and Iterate to achieve and maintain build happiness.

@codeJENNerator

Resources

⬢ Early Access Book: https://gradle.com/developer-productivity-engineering

⬢ Try out build scans for Maven and Gradle for free: https://scans.gradle.com

⬢ Gradle Enterprise docs and tutorials: https://docs.gradle.com

@codeJENNerator

https://gradle.com/developer-productivity-engineering/
https://scans.gradle.com
https://docs.gradle.com

Thank you!

@codeJENNerator

