
© OPITZ CONSULTING 2019 Öffentlich

Überraschend mehr Möglichkeiten

© OPITZ CONSULTING 2019

Continuous Lifecycle 2019

Stefan Kühnlein, Senior Solution Architect

DevOps aus der Sicht
eines Architekten

© OPITZ CONSULTING 2019 Öffentlich Seite 2

überzählige blaue Zahlenboxen löschen!

Agenda

1

2

3

4

5

DevOps and ITIL

Software Architecture

Deployment Strategies

Challenge Database Migration

Service Mesh

OC Powerpoint CI 2017 V 0.933

© OPITZ CONSULTING 2019 Öffentlich Seite 3

DevOps and ITIL 1

Continuous Lifecycle 2019

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 4

DevOps life cycle processes

Requirements Development Build Testing Deployment Executions

• Treat
Operations
personnel as
first-class
stakeholder

• Get their input
when devloping
requirements

• Small teams
• Limited

coordination
• Unit tests

• Build tools
• Supports

continuous
integration

• Automated
testing

• User acceptance
testing

• Deployment
tools

• Supports
continuous
deployment

• Monitoring
• Responding to

error conditions

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019
Seite 5

ITIL - Service Life Cycle

Service
Design

Service Transition

Service
Operation

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 6

Service Design

Considerations when designing a service

 What automation is going to be involved as a portion of the service?

 What are the SLAs for the service?

 What are the personnel requirements for the service?

 What are the compliance implications of the service?

 What are the implications for capacity?

 What are the business continuity implications of the service?

 What are the information security implications of the service?

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 7

Service Transition

Service transition involves extending the knowledge of the new or revised
service to the users and the immediate supporters of that service within
operations.

 Are all features of the old version supported in the new version?

 Which new feature are introduced? How will the scripts for the deployment
tool be modified, and who is responsible for that modifications?

 Will the new version require or support a different configuration of servers,
which includes both testing/staging and production servers?

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 8

Service Operation

During operation, events are defined ty ITIL, as “any detectable or discernible
occurrence that has significance for the management of the IT infrastructure
of the delivery of IT service and evaluation of the impact a deviation might
cause to the service.”

 Events of interest during operation include
 Status information from systems and infrastructure

 Environmental conditions, such as smoke detectors

 Software license usage

 Security information (e.g., from intrusion detection)

 Normal activity, such as performance metrics from servers and applications

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 9

Service Operation – Incident Management

 Core activities of incident management are
 Logging the incident

 Categorization and prioritization

 Initial diagnosis

 Escalation to appropriately skilled or authorized staff, if needed

 Investigation and diagnosis, including an analysis of the impact and scope of the incident

 Resolution and recovery, either through the user under guidance from support staff,
through the support staff directly, or through internal or external specialists

 Incident closure, including recategorization if appropriate, user satisfaction survey,
documentation and determination if the incident is likely to recur

Incident management is one of the areas where DevOps is changing the
traditional operations activities

© OPITZ CONSULTING 2019 Öffentlich Seite 10

Software Architecture 2

Continuous Lifecycle 2019

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 11

Maturity Model of native Cloud-Applications

Cloud Native
• Microservice architecture
• API-first design

Cloud Resilient
• Fault-tolerant and resilient design
• Cloud-agnostic runtime implementation
• Bundled metrics and monitoring

Cloud Friendly
• Is composed of loosely coupled services
• Services are discoverable by name
• 12-Factor App Principles

Cloud Ready
• Runs on virtualized infrastructure
• Self-contained, can be instantiated from an image or script

Level 0: Virtualized

Level 1: Loosley
Coupled

Level 2: Abstracted

Level 3: Adaptive

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 12

12 Factor App

1. Codebase

2. Dependencies

3. Configuration

4. Backing Services

5. Build, Release Run

6. Processes

7. Port Binding

8. Concurrency

9. Disposability

10. Development-Production Parity

11. Logs

12. Admin Processes

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 13

Design Principles

 Design for Distribution: Containers; microservices; API driven development

 Design for Configuration: One image; multiple environments

 Design for Resiliency: Fault-tolerant and self-healing

 Design for Elasticity: Scales dynamically

 Design for Delivery: Short roundtrips and automated provisioning

 Design for Performance: Responsive; concurrent; resource efficient

 Design for Automation: Automated Dev & Ops tasks

 Design for Diagnosable: Cluster-wide logs, metrics and traces

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 14

Design for Resiliency

M
ic

ro
 S

e
rv

ic
e

(s
)

UI

Persistence

Business

Logic

API

Runtime

(node.js, Spring Boot)

UI

Persistence

Business

Logic

API

Runtime

(node.js, Spring Boot)

UI

Persistence

Business

Logic

API

Runtime

(node.js, Spring Boot)

UI

Persistence

Business

Logic

API

Runtime

(node.js, Spring Boot)

Micro Service Resilience Pattern

Failure Prevention
• Fail-fast
• Circuit Breaker (Prevent

cascading failures)

• Isolation
• Loose Coupling

Failure Detection
• Circuit Breaker (Monitoring

connections)

• TimeOut
• Monitoring

Failure Mitigation
• Circuit Breaker (Fallback-

Default value)

• Shed Load
• Error Handler

Recovery
• Retry

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 15

Shallow and Deep Health Checks

 Sample „Ping“

 Doesn‘t tell anything about the logical
dependencies

L
o

a
d

 B
a

la
n

ce
r

Server Instance
OK Health Check

Server Instance
OK Health Check

Server Instance
OK Health Check

L
o

a
d

 B
a

la
n

ce
r

Server Instance
OK Health Check

Server Instance
OK Health Check

Server Instance
Fail Health Check

Deep Health Check

 Gives more information about the health

 Harder to implement

 Health Checks are expensive

Shallow Health Check

© OPITZ CONSULTING 2019 Öffentlich Seite 16

Deployment Strategies 3

Continuous Lifecycle 2019

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 17

Overview Deployment Strategies

 Recreate
Version A is terminated then version B is rolled out.

 Ramped (Rolling Update)
Version B is slowly rolled out and replacing version A.

 Blue- Green Deployment
Version B is released alongside version A, then the traffic is switched to version B.

 Canary Deployment
Version B is released to a subset of users, then proceed to a full rollout.

 A/B testing
Version B is released to a subset of users, then proceed to a full rollout.

 Shadow
Version B is released to a subset of users under specific condition.

© OPITZ CONSULTING 2019 Öffentlich

möglich, Hauptinh. l. + Sekundärinhalt r.

Continuous Lifecycle 2019 Seite 18

Recreate Strategy
The recreate strategy consists of shutting down version A and deploying
version B after version A is down.
This strategy implies downtime of the service.

 Pros
 Easy to setup

 Application state entirely renewed

 Cons
 High impact on the user

© OPITZ CONSULTING 2019 Öffentlich

möglich, Hauptinh. l. + Sekundärinhalt r.

Go DevOps 2019 Seite 19

Ramped (Rolling Update) Strategy
The ramped deployment strategy consists of slowly out a version of an application
by replacing instances one after the other.
The following parameters can increase the deployment time:

 Parallelism: Number of current instances to roll out

 Max. surge: How many instanced to add in addition

 Max. unavailable: Number of unavailable instances during rollout

 Pros
 Easy to set up

 Version is slowly released across
instances

 Convenient for stateful
applications

 Cons
 Rollout/rollback can take time

 Supporting multiple APIs is hard

 No control over traffic

© OPITZ CONSULTING 2019 Öffentlich

möglich, Hauptinh. l. + Sekundärinhalt r.

Continuous Lifecycle 2019 Seite 20

Blue- Green Deployment
 The blue/green deployment strategy differs from a ramped deployment, version

B (green) is deployed alongside version A (blue) with exactly the same amount
of instances. After testing that the new version meets all the requirements the
traffic is switched from version A to version B at the load balancer level.

 Pros
 Instant rollout/rollback

 Avoid versioning issue, the entire
application state is changed in one
go

 Cons
 Expensive at it requires double the

resources

 Proper test of the entire platform
should be done before releasing

 Handling stateful applications can
be hard

© OPITZ CONSULTING 2019 Öffentlich

möglich, Hauptinh. l. + Sekundärinhalt r.

Continuous Lifecycle 2019 Seite 21

Canary Deployment
A canary deployment consists of gradually shifting production traffic from version A
to version B. Usually the traffic is split based on weight. For example, 90 percent of
the requests go to version A, 10 percent go to version B.

 Pros
 Version released for a subset of

user

 Convenient for error rate and
performance monitoring

 Fast rollback

 Cons
 Slow rollout

100% 100%10%90%

© OPITZ CONSULTING 2019 Öffentlich

möglich, Hauptinh. l. + Sekundärinhalt r.

Continuous Lifecycle 2019 Seite 22

A/B Testing
A/B testing deployments consists of routing a subset of users to a new functionality
under specific conditions.

This technique is widely used to test conversion of a given feature and only roll-out
the version that converts the most.

 Technology support: browser version, screen size, operating system, etc

 Query parameters

 Geolocalisation

 Language

 Pros
 Several versions run in parallel

 Full control over the traffic
distribution

 Cons
 Requires intelligent load balancers

 Hard to troubleshoot errors for a
given session, distributed tracing
becomes mandatory

© OPITZ CONSULTING 2019 Öffentlich

möglich, Hauptinh. l. + Sekundärinhalt r.

Continuous Lifecycle 2019 Seite 23

Shadow
A shadow deployment consists of releasing version B alongside version A, fork
version A’s incoming requests and send them to version B as well without
impacting production traffic. This is particularly useful to test production load on a
new feature.

 Pros
 Performance testing of the

application with production traffic

 No impact on the user

 No rollout until stability and
performance o f the application
meet the requirements

 Cons
 Expensive as it requires double

the resources

 Not a true user test and can be
misleading

 Complex to setup

 Requires mocking service for
certain cases

© OPITZ CONSULTING 2019 Öffentlich Seite 24

Challenge Database Migration 4

Continuous Lifecycle 2019

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 25

Challenge: Database Migration & Continuous Delivery

The problems with Database Updates in DevOps
Environment

 We have to adapt existing data. This can be very
difficult if there is a huge amount of data

 It‘s hard to rollback changes done in the database in
case of critical error

 Database changes are difficult to test, because we
would need a database similar to the production
database base

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 26

Separated Data Sources

 Shared Database
 If the database changed, we have to

update all accessing components

 Separated Data Sources
 It‘s only necessary to coordinate the

database with one application

© OPITZ CONSULTING 2019 ÖffentlichContinuous Lifecycle 2019 Seite 27

Schema Update and Data Migration
Relational Databases NoSQL Databases

 NoSQL databases typically don‘t
have a restricted schema

 Data with the old and the new
structure can exists at the same
time

 We have make sure, that our
application handles variable data
structure including data migration

Change Log

Setup-Database.sql => v1
Add-Table.sql => v2
Add-Column.sql -> v3

Schema v3

Schema v2

 Relational Database have a fix
schema

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 28

Summary

 Try to make the schema changes backwards compatible

 Separated data sources for each deployment unit

 Schema update and data migration
 Relational databases: Use a migration tool to track changes and to automate updating the

database

 No SQL databases: No database update necessary as long as the application handles the
different data structures

 Continuous deployment
 It‘s easy without high availability constraint

 It‘s hard when high availability is required -> Multiple intermediate versions of the
application and update application instances step by step

© OPITZ CONSULTING 2019 Öffentlich Seite 29

Service Mesh 5

Continuous Lifecycle 2019

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 30

Architecture of a Service Mesh

Service
Discovery

Telemetry Security

Proxy

Con A

Proxy

Con A

C
o

n
tr

o
l P

la
n

e

K
u

b
e

rn
e

te
s

S
w

a
rm

M
e

so
s

… … …

CONTAINER PLATFORMS

P
ro

m
e

th
e

u
s

Ja
e

g
e

r

Z
ip

ki
n

… … …

Backends

Service-to-Service
Communication (physical)

HTTP, gRPC, TCP (TLS optional)

External Service
Request (physical)

HTTP, gRPC, TCP
(TLS optional) Service A Service B

Service-to-Service Communication (logical)External Service Request (logical)

Config data
to proxies

policy
checks,

telemetry

TLS certs to
proxies

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 31

Features of a Service Mesh

▪ Request Routing

▪ Load Balancing

▪ Traffic Shifting

▪ Traffic Mirroring

▪ Service Discovery

▪ Ingress, Egress

▪ API Specification

▪ Multicluster Mesh

▪ Timeouts

▪ Circuit Breaker

▪ Health Checks

▪ Retries

▪ Rate Limiting

▪ Delay & Fault
Injection

▪ Connection Pooling

▪ mTLS

▪ Role-Based Access
Control

▪ Workload Identity

▪ Authentication
Policies

▪ CORS Handling

▪ TLS Termination

▪ Metrics

▪ Logs

▪ Traces

Traffic Management Resiliency Security Observability

© OPITZ CONSULTING 2019 Öffentlich Seite 32Continuous Lifecycle 2019

Weitere Fragen & Antworten

© OPITZ CONSULTING 2019 Öffentlich

möglich

Continuous Lifecycle 2019 Seite 33

DevOps Best Practices

 Treat Ops as first-class citizens from the point of view of requirements.

 Made Dev more responsible for relevant incident handling

 Enforce the deployment process used by all, including Dev and Ops
personnel

 Use continuous deployment

 Develop infrastructure code, such as deployment scripts, with the same
set of practices as application code

© OPITZ CONSULTING 2019 Öffentlich

Überraschend mehr Möglichkeiten

@OC_WIRE

OPITZCONSULTING

opitzconsulting

opitz-consulting-bcb8-1009116

WWW.OPITZ-CONSULTING.COM

Continuous Lifecycle 2019

Stefan Kühnlein

Senior Solution Architect

Weltenburger Str. 4
81677 München

stefan.kuehnlein@opitz-consulting.com
+49 173 7279307

Seite 34

https://twitter.com/OC_WIRE
https://www.youtube.com/user/OPITZCONSULTING
http://www.slideshare.net/opitzconsulting
https://www.xing.com/communities/groups/opitz-consulting-1009116
http://www.opitz-consulting.com/
mailto:tefan.kuehnlein@opitz-consulting.com

