
@BastianHofmann

Creating a fast
Kubernetes Development Workflow

Bastian Hofmann

Container orchestration platform

Deploy, run and scale your services
in isolated containers

No vendor lock in

Runs on

Your laptop

Bare metal

Cloud Providers

And if you don't want to install and
maintain Kubernetes yourself

Managed Kubernetes

Standardized APIs

It works the same everywhere*

It works the same everywhere*

*mostly

This talk is about
how to use Kubernetes

Not only for production workloads

But in your development workflows

Agenda

Deployment of a micro-service
application

Some tools to help with local
development of this application on

Kubernetes

Let's have a look at the sample
application

OpenStack Cloud LoadBalancer

NGINX Ingress Controller NGINX Ingress Controller NGINX Ingress Controller

web-application web-application

MySQL Master

MySQL Slave

quote-svc

quote-svc

hello-svc

hello-svc

external-dns to create DNS entries
automatically

 cert-manager to retrieve
Let's Encrypt certificates

automatically

Database is managed by an Operator

MySQL Operator MySQLCluster

MySQL podsMySQL statefulset

Kubernetes controller manager

Discovers

Creates

Creates
Discovers

Monitors and manages

LinkerD as a Service Mesh for
Telemetry

If you are interested in the code and
how to set it up:

https://github.com/syseleven/
golem-workshop

Demo

Writing this YAML files is tedious

YAML files are tied to a specific
version and a specific environment

Production

Staging

Development

Per Development team

Per branch

Per developer

We need to maintain multiple, very
similar YAML files with slightly

different versions and configuration

"Templating"

Great tools because of standardized
Kubernetes API

Helm

Allows to install applications

So called "charts"

$	helm	install	stable/wordpress	\	
		--name	my-blog	\	
		--namespace	blog

Charts can depend on other charts

Multiple deployments of one chart
possible

Different release names

Different namespaces

Configuration with values

$	helm	install	stable/wordpress	\	
		--name	my-blog	\	
		--namespace	blog	\	
		-f	my-config-values.yaml

Writing your own charts is fairly
easy

Scaffolding to get started

$	helm	create	quote-svc

$	helm	install	./quote-svc	\	
		--namespace	dev-bastian	\	
		--name	dev-bastian-quote-svc	\	
		--values	dev.yaml	--values	bastian.yaml

Demo

Still, for development:

Make a code change

Build docker image

Push docker image

Run helm install/upgrade with new
image version

Can this be quicker?

Run everything locally

docker-compose

Duplication of the definition of how
to run a container

Inconsistencies

If you have a lot of services, you have
to run a lot locally

Some services locally, some remote

Service Discovery

Not every service is exposed to the
Internet

Shared resources with other
developers?

Other options?

Tilt

$	tilt	up

Watches for code changes

Rebuilds docker image

Deploys to Kubernetes

Sets up port-forwarding

Can sync changed files directly into a
running container

Demo

Another approach

Creates a two-way proxy between
the Kubernetes cluster and you

$	telepresence	
T:	Starting	proxy	with	method	'vpn-tcp'...	

@fhgbvx65xg|bash-3.2$	curl	http://quote-svc/quote	|	jq	'.'	
[
		{	
				"ID":	503,	
				"title":	"stefan	sagmeister",	
				"content":	"<p>...</p>\n",	
				"link":	"https://quotesondesign.com/stefan-
sagmeister-2/"	
		}	
]

Swap a running deployment in the
cluster with a local process

... or a locally running docker
container

$	telepresence	--swap-deployment	quote-svc	--namespace	
dev-flow-demo	--expose	3000	--run	npm	run	debug	

T:	Starting	proxy	with	method	'vpn-tcp',...	
T:	Forwarding	remote	port	3000	to	local	port	3000....	

>	quote-svc@1.0.0	debug	/Users/bhofmann/forge_test/quote-
svc	
>	nodemon	--inspect	quote-svc.js	
[nodemon]	watching:	*.*	
[nodemon]	starting	`node	--inspect	quote-svc.js`	
Debugger	listening	on	ws://127.0.0.1:9229/83aa27ac-
d879-4b50-a228-440354cca791	
quote	svc	listening	on	port	3000!

Demo

Summary

Powerful

Great tooling because of common
APIs

Especially great if you have multiple
services and don't want to run

everything locally

I just picked helm, tilt and
telepresence. There is more for

different use-cases.

mail@bastianhofmann.de

https://twitter.com/BastianHofmann
http://speakerdeck.com/u/bastianhofmann
https://github.com/syseleven/golem-workshop

mailto:mail@bastianhofmann.de
https://twitter.com/BastianHofmann
http://speakerdeck.com/u/bastianhofmann
https://github.com/syseleven/golem-workshop

