
Werkzeuge zum Bauen von
Container-Images

Tools to Build Container Images
Patrick Harböck / Martin Höfling

November 13th, 2019
(ContainerConf)

1

What is Docker?

/usr/local/bin/node
/opt/app/node_modules/
/opt/app/main.js

Container Image Builder Container Runtime

3

Docker Images

4

Container Images
● Manifest / Metadata

○ Default configuration for creating containers

○ Content hashes of layers to ensure integrity
● Layers

○ File system packed with tar

○ Multiple layers → root file system for containers

5

Layer1: 7d97e98f8af71
Layer2: e703abc8f639e

ENV | WORKDIR | USER | CMD

Container Image Format Evolution

6

2013 2014 2015 2016 2017

Image Spec v1 Registry v2 Image Spec v1.2

OCI Image Spec v1

Open
Container
Initiative

7https://www.opencontainers.org/about/members

https://www.opencontainers.org/about/members

DEMO: Build a
Container Image
from Scratch

8

DEMO: Build a Container Image from Scratch

9

main.go layer.tar config.json docker-
image.tar

docker load
&&

docker run

DEMO: Build a Container Image from Scratch

11

main.go layer.tar config.json docker-
image.tar

docker load
&&

docker run

● No elevated privileges required

● No Dockerfile

● No docker build

What’s wrong with
building images via
Docker?

12

è Security
è Scalability

è Flexibility
13

è Security
è Scalability

è Flexibility
14

How Docker builds container images

15

Filesystem Layer

RUN apt install nodejs

RUN npm install

How Docker builds container images

● docker build uses Docker containers
● Docker containers require isolation
● Docker requires elevated privileges
● Build pipelines / developers can access Docker

è Security nightmare on shared infrastructure

“First of all, only trusted users should be allowed to
control your Docker daemon.”
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface

16

https://docs.docker.com/engine/security/security/

DEMO: Host Access via privileged container

Host (Minikube VM)

Docker Daemon

Docker-in-Docker Daemon
(as Kubernetes Pod)

17

Docker in Docker Kubernetes Pod Spec
apiVersion: v1
kind: Pod
metadata:

name: dind
spec:

hostname: dind-pod
containers:

- name: dind
image: docker:dind
securityContext:

privileged: True
ports:

- containerPort: 2375
18

DEMO: Host Access via privileged container

Host

Docker Daemon

Docker-in-Docker Daemon

20

Security Risks?

● Privileged Docker-in-Docker → full host access

● Mounting or exposing Docker socket → full host access

● Base image runs as container root → larger vulnerability surface

→ Easy to break and lose container isolation

21

Remark: Hermetic Builds and Reproducibility

→ Hermetic: sandboxed build process

→ Reproducible builds result in verifiable artifacts

22

è Security
è Scalability

è Flexibility
23

Caching

● Allows scaling up CI/CD pipelines

● Reuse base layers across different branches and builds

● Reproducible builds improve caching

24

Build Pipeline

25

Github
• source code

repository

docker build
• docker-in-docker
• privileged pod

Docker Registry
• pull cache
• push images

Scalability Issues
● One Docker daemon does not scale for parallel builds

● No distributed caching support

è Security
è Scalability

è Flexibility
26

Flexibility

● How restricted is the build process and image definition?

○ Can developers use any tools and languages they want?

○ How well does it integrate into an existing development pipeline?

27

Source Code ??? Container
Image

Dockerfile based Tools
● Extract base layer(s)
● Run a command in sub container or directly
● Snapshot Filesystem

ü Generic
- Problem: Supported Dockerfile Features?

- USER – run commands as specific user

- Multistage builds

- Root vs. non-root

FROM ubuntu:18.04

RUN apt-get update
RUN apt-get install –y nginx

COPY nginx.conf /etc/nginx/

EXPOSE 8080

ENTRYPOINT [‘/usr/bin/nginx’]

28

● Focus on scalability,

performance, extensibility

● Experimental support

in newer Docker versions

and with docker buildx

● Optional rootless mode 30

Tool Primary
Maintainer Security Scalability Flexibility

BuildKit Docker Dockerfile

● Secure and flexible

builds of OCI images

● Intended as a

Docker replacement

together with Podman

31

Tool Primary
Maintainer Security Scalability Flexibility

Buildah Red Hat Dockerfile

● Designed for Kubernetes

● Compatible with

○ AppArmor / SELinux

○ gVisor

● Focus on security

and performance

● Reproducible builds

32

Tool Primary
Maintainer Security Scalability Flexibility

Kaniko Google Dockerfile

● Focus on security

and performance

● Dockerfile support with

opinionated modifications

● Distributed caching of layers

33

Tool Primary
Maintainer Security Scalability Flexibility

Makisu Uber Dockerfile

Tailored image construction

● Tailored for a distinct language and build-system

● The actual build is not performed in a (child) container
● The build result is often combined with a base image

○ e.g. Node.js runtime + node_modules + application

No arbitrary
command

execution required
Limited flexibility

34

● Maven / Gradle plugin
● Distroless Java base image

Builds are

ü Minimal

ü Reproducible

ü Fast (caching)

35

Tool Primary
Maintainer Security Scalability Flexibility

Jib Google Java only

● Supports Python, Node.js,
Java, C/C++, Go, Rust, …

Builds are

ü Minimal

ü Reproducible

ü Fast (caching)

- Complex rules written in Starlark
36

Tool Primary
Maintainer Security Scalability Flexibility

Bazel Google Starlark rules

37

Tool Primary
Maintainer Security Scalability Flexibility

OpenShift
Source-to-Image Red Hat Common stacks

38

Tool Primary
Maintainer Security Scalability Flexibility

Cloud Native
Buildpacks Heroku / Pivotal / CNCF Common stacks

Tool Primary
Maintainer Security Scalability Flexibility

docker build Docker Dockerfile

docker buildx (BuildKit) Docker Dockerfile

Buildah Red Hat Dockerfile

Kaniko Google Dockerfile

Makisu Uber Dockerfile

Jib Google Java only

Bazel Google Starlark rules

OpenShift Source-to-Image Red Hat Common stacks

Cloud Native Buildpacks Heroku / Pivotal / CNCF Common stacks

What should
I use now?

40

Use case: Small Team

● No strict security requirements for team isolation

● Teams have full access to CI infrastructure

è Docker
Still a valid choice

è Buildah
Flexible, only parts of Dockerfile syntax supported securely

è BuildKit
Are you feeling adventurous? Potential transition path with docker buildx

41

Use case: Multiple teams, Provided K8s infrastructure
● Cannot modify K8s infrastructure, no privileged containers, no container nesting
● Teams are isolated, e.g. on namespace level

è Kaniko, e.g. combined with Skaffold or Knative / Tekton

■ Shared volume caching
(e.g. on Google Cloud Platform)

è Take a look at: Makisu

■ Fine grained distributed cache control

42

Use case: No Dockerfile required

e.g. modern dev stack, Container Native Team

è Bazel

è Jib

è Cloud Native Buildpacks

43

No classical ops pattern!

apt-get install python-dev

Docker-less
Infrastructure?

https://phippy.io 44

https://phippy.io

Re-evaluate your
container build process!

/martinhoefling

/Pharb

/TNG 45

https://github.com/martinhoefling
https://github.com/Pharb/talk_build_nodejs_containers
https://github.com/TNG

